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Fluctuations Around the Boltzmann Equation 
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For a system of hard spheres we prove the convergence of the second moment 
of the fluctuation field in the low-density limit. This extends a previous result by 
van Beijeren, Lanford, Lebowitz and Spohn(I) to nonequilibrium states. 
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1. INTRODUCTION TO THE PROBLEM OF FLUCTUATIONS 

We consider a system of hard spheres of diameter c and unit mass inside a 
bounded region A c R 3. The hard spheres collide elastically amongst  them- 
selves and are specularly reflected at the boundary of A. In essence this 
prescription defines the dynamics of hard spheres. We denote the corre- 
sponding flow by T~ acting on the grand canonical phase space F 
= U n>o(A x R3) n. If x E F stands for the initial positions and momenta  of 
the particles, then T~x are the positions and momenta  of the particles at the 
time t. We assume that the initial state of the system is given by a 
probability measure/~ '  on F which is absolutely continuous with respect to 
the Lebesgue measure. (In F there are configurations for which spheres 
overlap. Initially, and therefore at any other time, probability zero is 
assigned to these configurations. There are also other configurations lead- 
ing in the course of time to grazing and triple collisions. For these T t" 
remains undefined. As to be discussed in the following section they form a 
set of measure zero with respect to/~' .)  

We want to understand the macroscopic behavior of the hard sphere 
gas at low density. In this regime it is natural to study the number  n'(A, t) 
of particles in A at time t, where A c A x R  3 is some region of the 
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one-particle phase space. For given initial conditions n '(A,t)  is some 
well-defined integer. However, since we assumed a distribution of the initial 
conditions according to the probability measure /~', n '(A,t)  has to be 
considered a random variable on (F,/~'). Note that the randomness enters 
only through the initial conditions. The dynamics is deterministic. 

Let xj = (qj, pj) stand for the position and momentum of the j th  
particle and let Xa denote the indicator function of the set A. 

Then, with n'(A, 0) = M(A), 

n ' ( A ) ( x  1 . . . . .  Xn) = ~ XA(Xj) (1.1) 
j= l  

and 

. . . . .  x . )  = o r ; ] ( X l  . . . . .  x . )  

= n~(A)[ T[(xl . . . . .  Xn)] (1.2) 
Both physically as well as mathematically it is convenient to consider a 
somewhat wider class of random variables. Let f :  A • R3-~ R be a bounded 
and measurable function on the one-particle space. Then we define 

X ' ( f ) ( x l ,  . . . , x.) = ~ f(xj)  (1.3) 
j= l  

on (F, ,u') and 

X ' ( f , t )  = X ' ( f )  o T t (1.4) 

The collection of random variables {X' ( f ,  t ) I f  ~ L~ A • ~3), t E •} 
is a generalized random fieM over A • R 3 • •. 

Often, a fixed countable partition (Ail i ~ ~) of the one-particle space 
is introduced by the argument that physical measurements have only a 
finite resolution. This construction is physically rather artificial and in fact 
unnecessary. What one really wants to study is the number of particles 
n ' (q ,p , t )  at the point ( q , p ) E  A • R 3 at time t considered as random 
variables. Then n'(q, p, t) is a random field over A • R 3 • R. Since n~(q, p, 
t) is a distribution rather than a function on I' we follow the common 
practice to integrate n'(q, p, t)  over an arbitrary test function f in order 
to obtain the well-defined random variables X ' ( f ,  t )= f dqdpn'(q,  p, t ) f .  
(q, p). 

We want to investigate the structure of the random field X ' ( f ,  t) at low 
(volume) density. As discussed before (z3) the proper scaling is the Grad 
limit 

diameter --- E 

particle dens i ty~c -2  
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with e ~ 0, which implies a constant mean free path and that the fraction of 
volume occupied by spheres is proportional to e. The increase of the 
particle density is a condition on the initial measure /~'. We denote the 
average with respect to /~ '  by ( . ) , .  Then Lanford (3-5) has proved, under 
suitable assumptions on/L ~ (cf. Section 2), the following theorem: If at t = 0 

!i~eZ(x~(f))~ = f dq dp r(q, p)f(q, p) (1.5) 

and 

lime4( (X~(f)2)~ - (X~(f ) )~)  = 0  (1.6) 
~--~0 

then also for It] < t o 

limc2(X~(f, t)) = f dq dp r(q, p, t)f(q, p) (1.7) 
e-~O �9 

and 

l ime4/ (X ' ( f , t )2> ,  - <X'(f,t))~} = 0  (1.8) 
e---~0 t 

r(q, p, t) is the solution of the Boltzmann equation with initial conditions 
r(q, p), which are defined through (1.5). For negative times the sign of the 
collision operator in the Boltzmann equation has to be reversed, t o depends 
on the sequence of initial states. The restriction It] < t o is believed to be of 
a technical nature. 

Lanford's result means that the distribution of E2X'(f, t) converges to a 
6 function concentrated at fdqdpr(q,p,t)f(q,p). For low density the 
random field ~2X'(f, t) becomes deterministic and its evolution is governed 
by a nonlinear field equation on the one-particle phase space. 

Given Lanford's result the formulation of the fluctuation problem is 
obvious. One defines the fluctuation field 

~'(f,t) = e[ X ' ( f , t )  - ( X ' ( f , t )  ),] (1.9) 

and one would like to know whether 

l im~'( f ,  t) = ~(f, t) (1.10) 
e--~0 

exists. 
One part of the problem is to guess the structure of the limiting field. 

Quite generally, it is assumed that the limiting field is Gaussian. Then the 
problem is reduced to finding the covafiance of ~(f, t). If/z" is a sequence of 
grand canonical equilibrium states with fugacity z, = ~-2z and inverse 
temperature fl, then the correct covariance may be guessed through the 
knowledge of the stationary state. (This is often referred to as the fluc- 
tuation-dissipation theorem.) If/z" is a sequence of nonequilibrium states, 
then the problem is more subtle. A careful formal discussion may be found 
in a recent preprint by Cohen and Ernst (6) with references to earlier work. 



288 Spohn 

To uncover the structure of the limiting field is not a purely academic 
problem. Light-scattering measurements allows us to measure density fluc- 
tuations with great precision. In this connection the correct prediction for 
the fluctuations in a low-density gas in a steady heat-transporting state has 
caused some discussions recently. (7-10 

The fluctuation problem is well known from other dynamical systems. 
Braun and Hepp (12) studied an interacting particle system in the mean field 
limit. The properly scaled number of particles in some region of the 
one-particle phase space is governed by the Vlasov equation. They prove 
the existence of a limiting fluctuation field and show that this field is 
Gaussian. The fluctuations present in the initial state evolve deterministicly 
according to the linearized Vlasov equation. The mean field limit of 
quantum mechanical models has been studied by Hepp and Lieb. (13) The 
limiting fluctuation field is a free Bose field in vacuum. 

For s[ochastic models there are many examples for the kind of 
fluctuation problem considered here. To mention only some of them: the 12 
expansion of van Kampen (14) and its rigorous treatment by Kurtz, (15) 
stochastic Ising models as studied by Holley and Strook, (16~ and stochastic 
models for chemical reactions as discussed by Nicolis and Prigogine (17) and 
rigorized by Arnold and Kotelenez. (18) 

Let us point out that equilibrium fluctuation theory also follows the 
above scheme. Away from phase transitions, the distribution of intensive 
observables, as the energy per volume or the number of particles per 
volume, tends to a ~ function at a point determined by the free energy per 
unit volume. Their fluctuations are Gaussian and are determined by 
suitable second derivatives of the free energy. 

For the Boltzmann equation the convergence of the second moment of 
the fluctuation field for a sequence of grand canonical equilibrium states 
with fugacity z, = e-2z and inverse temperature/3 has been proved in Ref. 
1. Here we prove the convergence of the second moment of the fluctuation 
field at unequal times for a sequence of nonequilibrium states. In both 
cases it can be proved that in the limit e --) 0 the third moment vanishes and 
that the fourth moment converges to pairings of the limiting second 
moments as should be the case for a Gaussian random field. The conver- 
gence of higher moments has not yet been investigated in detail. Under 
sufficiently strong assumptions on the initial state Gaussian fluctuations 
seem to be plausible. 

2. HARD SPHERE DYNAMICS: LOW-DENSITY LIMIT 

The dynamics of hard spheres is particularly simple, since the collision 
time is zero. On the other hand there are certain exceptional initial 
conditions for which the dynamics remains undefined. For example, if 
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three spheres touch each other it would be unwise to find a constructive 
rule for how to continue the dynamics through such a triple collision. A 
careful discussion of the dynamics of hard spheres may be found in the 
thesis of Alexander (19) (of. also Aizenman(2~ We will establish here just 
some notation and quote some results which will be needed later on. 

We assume that A is a bounded region of R 3 with smooth boundary 
0A with a curvature strictly bounded below and bounded above by e -  ~. Let 
F, = (A • R3) ". The allowed phase space is 

r . ( e )  -- ( x ,  . . . . .  x .  e r .I  Iq, - qjl >~ e, Iqi - q[ > � 9  

q @ O A ,  i 4 = j =  l , . . . , n )  

We define a mapping x ~ 0F,(�9 to x ' E  0Fn(E ) relating the phase 
point x after the collision to the phase point x '  before the collision. Let 
X = ( X  1 . . . . .  X,) E Orn(�9 ). If either [qi - q:-[ = ' ,  ]qj - q/<[ = �9 or [qi - qj[ 
= �9  [q; - q:[ = e for q E 0A, i vaj ~ k = 1 , . . . ,  n, then x'  is not defined 
(triple collisions). Let ~(q) be the inward normal to OA at q and let O3 be a 
unit vector in R 3, o3 E S 2. If either qj = q i  + co3 and o3" ( P i - P j )  = 0 or 
qi = q + (e /2)~(q)  and n ( q ) ' P i  = 0, then x'  is not defined (grazing colli- 
sions). For a pair collision between particle i and j ,  x and x'  are related by 

xi = (qi, el),  xj = (qi + Eo3, Pj) 

X; = (qi, _P;), Xj = (qi + �9 Pj) 

with o3, (Pi - P j )  < 0 and 

P; = Pg - [o3" (Pi - Pj)]o3 (2.1) 

:,; = 5 + [ o3 . (p, - pj) ]o3 

If o3- (Pi -Pj) > O, then x i = x:, x: = xj. 
For a specular reflection of particle i at the boundary x and x '  are 

related by 

xi = (qi, Pi), x; = (qi, IV:) 
with ~(q) "Pi > 0 and 

P~ =P i  - 2 [ t~(q) .p , ]~(q)  (2.2) 

If n(q )  " Pi < O, then x i = x:.  
The flow T: is now constructed in the obvious way. It will turn out to 

be convenient to define T 7 as continuous from the future. For t >1 0, let 
x ( - t )  = ( q l - p l t ,  p~ . . . . .  q n - - p , t ,  Pn) according to the free motion. Let 
t 1 ~> 0 be the smallest time such that x ( -  tl) ~ 0F,(e). Then T~_tx = x ( -  t) 
for 0 < t < t r If x ' ( -  tl) is defined, then x ' ( -  t I - t) = q l ( -  tl) - P ] ( -  tl)t, 
p ~ ( - t l )  . . . . .  q ' ( - t ] )  - p ' , ( - t l ) t ,  p ' , ( - t  O. Let t 2 be the smallest time such 
that x ' ( - t  1 - t 2 ) E  0F,(c). Since x ' ( - t l )  points to the exterior of Fn(r 
necessarily t 2 > 0. Then TC_(q+t)x = xt(  - t 1 - t) for 0 < t < t2, etc. By this 
construction T~_t x is defined until a grazing collision or a triple collision is 
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reached. Let T > 0. Then 

Fn(C , T)  = (x  ~ Fn(c) I Z ~ t x  is defined for 0 < t < T )  

Alexander (19) proves that F, (r n (~, T) has Lebesgue measure zero. 
We impose now conditions on the initial measure/ t ' .  We assume that 

/~ is absolutely continuous with respect to the Lebesgue measure, i.e., 

1 ~s162 1 . . . . .  dxn) = j~,(x,  . . . . .  x , )  ~ dx l  " . " dx ,  (2.3) 

Then f2 o TL, =f2( t ) ,  defined on Fn(e,t), are the densities of the time- 
evolved measure #,  o T'_ t. The correlation functions corresponding to this 
measure are defined by 

g ( X l , . . . , x ~  ax,+, ' ' 'aX,+mfj+m(x,  . . . . .  
m = O  

(2.4) 

on Fn(c, t). For the Grad limit it is convenient to consider the rescaled 
correlation functions defined by 

r~,(t) = E2npn~(/) (2.5) 

We will use the vector notation r ' ( t )  = (r~(t), r[(t)  . . . .  ) for the sequence of 
correlation functions and we set r ' (0) = r ". 

Let h e be the normalized Maxwellian, 

h/3(x:) = ( B/2~)3/2exp( - �89 fie:). 

Then we assume the following. 
(C1) There exist constants M, fl, and z such that 

n 
r~(x ,  . . . . .  x , )  < M I-[ { z h ~ ( x j ) )  (2.6) 

j = l  

on l~n (e) for all n = 1, 2, . . . . 
Note that (C1) implies a corresponding bound onlY(t) and r~(t), how- 

ever, with a constant M(e) = Mexp(e-2z) .  
Let S2( t ) r ,  = r ,  o T'_t be the group induced by the dynamics of n 

spheres. Let C,'+1 be the collision operator defined by ( C ~ + : ' ) j  = 
C~ ' and ~ n j  + l r n + l  

' " '  r" Xex x , ) =  ~ :R3• ~ n + l  n + l ) l ,  1~ " " " 
j = l  

(2.7) 
X ~ ' ( P n + ,  - p j ) r ~ + , ( X l  . . . . .  qj, p j , . . . ,  q+ + e ~ , p , + , )  

Then Lanford proves that on F, (e, t) 

r,~(Xl, . . . , xn , t )  = [ S~( t ) r~] (x  1 . . . .  , Xn) 

+ foot d S S ~ , ( t -  s ) [ C ~ , + , r ~ , + , ( s ) ] ( x l , . . . , x , )  (2.8) 
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Iterating (2.8) yields the perturbation expansion 

oo 

= ~a (_ d r , ' ' '  dt m S ~ ( t -  r;(t) t l )  
= J{l < " ' "  t m 0 0 t m < t l <  

X C; ,+1 . . .  C;,+mS;,+m(tm)r;,+m (2.9) 

(2.9) is valid for all times. In fact (2.9) is a finite sum because of the hard 
core exclusion. Because of the Maxwellian bound (Cl) we may manipulate 
(2.9) freely as long as e > 0. 

We are now in a position to make precise the low-density behavior, 
e---> O, of the correlation functions r~(t). Let S~( t ) f=  f o T(_"t), where T(_~, ) is 
the flow corresponding to n free particles inside A with specular reflection 
at OA. Let 

Fn( t) = (x  1 . . . . .  x n = x E r n I qi(s,x) v a qj(s ,x)  for 0 < s < t and 

i v a j = 1 . . . . .  n, where qj(s,x)  = qj(T(_n)sx ) ) 

Points in F , ( t )  do not lead under the free motion backwards in time to a 
collision between any pair of particles, regarded as point particles. Let the 
limiting collision operator be defined by 

(Cn+lr)j = ~njCn+lrn+l 

and 

( ,ro+ ,)(x ,  . . . . .  x . )  

= k ~ dp.+ld~&'(P.+,-Pj) 
j = l  "(p,~+l-pj)>O 

(2.10) [ )< r n + l ( X l , . . .  , q j , / O ;  . . . . .  qj ,  P n + l )  

- -  rn + l ( X 1 . . . . .  q j ,  P j  . . . . .  qj]3n + l ) ] 

To ensure the existence of the Grad limit e + 0  in addition to (C1) we have 
to impose the following. 

(C2) There exists a function r. on F. which is continuous and continu- 
ous through specular reflection at OA such that for some s > 0 

lim " -  (2 .11 )  ~_~or~- r, 

uniformly on compact sets of F, (s) for all n = l, 2 . . . . .  

T h e o r e m  (Lanford) .  Let (C1) and (C2) be satisfied. Then for 

o < ,  <. to = to (Z ,  = 

limrn'(t ) = r,(t)  
e-->O 

(2.12) 
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exists uniformly on compact sets of ]~,(t + s). G(t) is continuous and 
satisfies (2.6) with some M',z' ,  fi'. In this class of functions r~(t) is the 
unique solution of the set of integral equations 

r.(t) = S.(t)G + dsSn(t - s)C.+,r.+l(s), n = 0, 1 . . . .  (2.13) 

3. SECOND MOMENT OF THE FLUCTUATION FIELD 

From now on we assume that A is a box with periodic boundary 
conditions ( =  torus). So points in aA • R 3 are identified in the obvious 

3 way. We should distinguish this notationally as (A x ~ )periodized, but we 
will not do so. 

For the existence of the second moment of the fluctuation field we 
need stronger assumptions on the correlation functions of the initial state. 

(F1) There exist constants M',z' ,  fl' such that for all m,n >>- 1 

c [G+m(X,, -2 c . . . , X n + m ) - - r ~ , ( X l , . . . , x , ) r ~ , ( X , + , , . . . , X , + m )  ] 
n + m  

< M '  ]-I (z'h/3"(xj)} (3.1) 
j = l  

Note that there is no hope for (3.1) being satisfied outside Fn+m(~ ). 
(F2) There exist continuous functions r : A • R 3 ~ R and h : (A • g~3)2 

---> R such that for all m, n/> 1, 

l i m e  - 2  r2+ m x . . . .  - r2(x,, ~ . . .  Xn+m) ] [ ( , , x . + m )  . . . .  x ~ 1 7 6  , 

= (xj, x.+i) I I  r(Xk) (3.2) 
j = l i = l  k = l  

k~j ,k~n+i  

uniformly on compact sets of F~+m(0 ). 
We note that (F1) and (F2) imply 

~i~ (~Y (f)6"(  g) ) ,= f dxl dx2h(x~,x2)f(xl)g(x2) 

+ f dx  1 f ( x l ) g ( x l ) r ( x l )  ( 3 . 3 )  

So h(xl ,x2)+ t~(x 1 - xz)r(xl) is the kernel of the covariance matrix of the 
initial field. In particular, 

lime4[ ( X ' ( f ) 2 )  _ ( X , ( f ) ) ~ ]  = 0 (3.4) 
e ~ O  L x - - - -  ~ �9 

which implies by (C1) and (C2) 

rn(Xl . . . . .  Xn) = ~I r(xj) (3.5) 
j = l  
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in (2.11). For the initial conditions (3.5) the solution of the integral 
equations (2.13) is given by 

r n ( X  1 . . . . .  Xn, t ) = f i  r(xj, t) 
j= l  

where r (~ ,  t) is the solution of the Boltzmann equation with initial condi- 
tions r(xj), 

= Sl(t)r + fords Sl( t  - s)C2r(s)r(s ) (3.6) r ( t )  

(C1) and (C2) imply r(q, 1)) <<" Mzh~(1))" Then (F1) and (F2) imply h(x 1, x2) 
= h(x2,x 0 and h(xl, x2) < M'z'2h~,(xOh/~,(x2). 

If /~' is the sequence of grand canonical equilibrium states with 
fugacity z, = e-2z and inverse temperature/3, then using the Mayer expan- 
sion one shows that (F1) and (F2) are satisfied with h(xl ,x2)= O, r(q, 1)) 
= zh/3(p ), and z' = ez,/3' =/3. 

To state our result we need still some further definitions. Let Cr( 0 be 
the collision operator linearized at r(t), 

( Cr( ~  )( q' 1)) = f~-(el-p)> o d1)1 d~ ~o. (1)1 - 1)) 

• [ r(q, 1)~, t)f(q, p') + r(q, 1)', t)f(q, 1)~) 

- r ( q ,  1)~,t)f(q,p ) - r(q, 1),t)f(q, 1)l)] (3.7) 

Since r(t) is defined only for 0 < t <. to(Z,/3), so is C~( 0 . We define the 
propagator U(t,s) as the solution operator of the linearized Boltzmann 
equation in its integral form 

t t t 

U ( t , s ) f  = Sl(t  - s ) f  + ~ ds Sl(t  - s )G(s')[ U(s',s)f] (3.8) 
J S  

Let Ch be the class of continuous functions on A • ~3 bounded by some 
Maxwellian. Then in C h the integral equation (3.8) has a unique solution 
for 0 ,<< s < t < to(Z,/3). The same is true for the solution U*(t,s) of the 
adjoint equation. 

We define for f, g E Ch the reeollision operator 

[ R ( f ,  g)](ql, Pl, q2, 1)2) = 3(ql - q2) 
(3.9) 

dCo ~. (1)2 - 1)1) { f (  q2, P'2)g(q,, P',) 
�9 (P2-P~) > 0 

- f (q2 ,  P2)g(q~, P~)} 

Theorem. Let the correlation functions of the sequence of initial 
slates/~" satisfy (C1), (C2), (F1), and (F2). Let f, g ~ C h. Then for 0 ~< s < t 
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< t o = min[to(Z , fl), to(Z', fl')] 

t)~'(g,s)) = f dx 1 f(xl)(  (~'(f, U( t , s ) g r ( s ) ) ( x i )  

f dx, dx 2 f(x,)g(x:)(  U(t, O) U(s, O)h)(x,, x:) + 

+ fooS S'f dxs(V*(,,s')1)(Xl) 
x (3.10) 

Remark. If the kernel of U*(t,s), in the distributional sense, is 
denoted by U*(t, s)(xl, xs), (U(t, s)f)(x2) = f dXl U*(t, s)(xl, xz)f(xl), then 
the kernel of the covariance of the fluctuation field is 

U*( t, s)( xp x2)r( x 2, s) + ( U( t, O) U(s, O)h)( x,, x2) 

+ foSdS'[U(t,s')U(s,s')R(r(s'),r(s'))](Xl,X2) (3.11) 

Remark. In thermal equilibrium r(s) = zh B and, since R(h B, h~) = O, 
the third term of (3.11) vanishes. Let us define the linearized Boltzmann 
operator L by Lf= Lh~(ht~f). [Lr(t) corresponds to linearizing as r(t) +f,  
whereas L corresponds to linearizing as he(1 +f ) . ]  Let % = LS(A • ~3, 
zh~(p)dqdp) with scalar product ( .  1->. L generates a contraction semi- 
group in %. For the grand canonical ensemble h -- 0 and the covariance is 
given by (fleL(t-')g), which coincides with the result obtained in Ref. 1. 
For the canonical ensemble the constraint on the number of particles 
results in h(Xl, x2) = -zhB(xOzh~(xs) and therefore the covariance is given 
by ( feL( t - ' )g>-  ( f l P l g ) =  ( f - -P l f l eL( t -S ) (g -  Pig)>, where Pl is the 
orthogonal projection onto the constant function. 

Proof. (i) the perturbation series. Let (V'(t)r'),  = r~(t) and let 

(A(g)r ') ,(Xl . . . . .  x , ) = i  ~ g(xj)!r~(x, . . . . .  Xn) 
L J j = l  

(A (g)r')o = o 

( B ( g ) r ' ) n ( x  1 . . . .  , x.) = f ax.+,g(x~ . . . . .  
Then 

( ( ' ( f , t ) ( ' (  g,s) ) = c- 2[ ( X ' ( f ,  t)X'( g,s) ), - ( X ' ( f ,  t) ), ( X ' (  g,s) ),] 

= f dx, f(x,){ V'(t- s)[A(g) + ,-2B(g)]V'(s)r'},(x,) 

f dx, f dx2 g(xs)rr(x2,,) (3.12) 



Fluctuations Around the Boltzmann Equation 295 

By Lanford's theorem 

lim ( dx 1 f (x l )  (V~(t - s)A ( g) V~(s)r~)l(xl)  
~-~O J (3.13) 

= f dx 1 f(xl) (V(t - s)A (g) V(S)F)I(XI) 

Since (V(s)r) .  = YIr(s), the Boltzmann hierarchy (2.13) has to be solved 
with initial conditions 

. . . . .   314, 

One obtains 

( v ( r  - s)r)n(X, . . . . .  x,)  = 2 U(t ,s )gr(s)) (xj  (x~,~ (3.15) 
l k~j 

(3.15) together with (3.13) gives the first term of (3.10). 
In order to write down the perturbation series for the B ( g )  term, we 

have to define various collision operators. Let 

(n (x ) re )n (X , ,  . . . , Xn) = rne+l(Xl . . . . .  Xn.X ) (3.16) 

( C ' ( j ,  p .+, ,  ~dn+ , ) r ' ) . ( x l  . . . . .  Xn) 

= rn~+l(Xl . . . . .  xn,qj + e~.+~,p.+l)~.+~" (p.+,  --pj) (3.17) 

for j = 1 . . . . .  n, and let 

CL+ , = f d p , + , d & + , C ~ ( j ,  p o + , ~ . + , )  (3.18) 

Then 

, - 2  f dXl f ( x l ) ( V ' ( t  - s ) B ( g ) V ' ( s ) r ' ) l ( X l )  

= n~__0s d h ' ' ' d t ,  f d x ' d x 2 f ( x O g ( x 2 )  
_ d i n ' ' "  < t k < S < ~ l k _ l < < . . . .  ~ 1 1 ~ l  

k k + l  

x E  E " "  E g 
j l = l  j 2 = 1 , 2  j k - l = l , 3 j k = l  

n + l  

�9 ' '  ~ [ S ~ ( t -  tl)Cj~,3S~(t I - t2) 
j . = l  

�9 �9 �9 S~r 1 -- s ) B ( x 2 )  ) S / ~ + l ( S  - -  t k ) C j ~ , k + 2  

�9 . . C j ~ , n + z g ~ , + 2 ( t n ) r ~ + 2 ] ( x l )  ( 3 . 1 9 )  

The index k is determined by t k < s < t k_ l- 
We concentrate now on one particular term of the pertubation series 
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(3.19) and we will worry about convergence of the series uniformly in c 
later on. Let us f ixn ,  0 < t  n <  - - .  < t  k < s < t  k _ l <  " ' "  < t l < t a n d a  
sequence ( j l  . . . . .  jn). At time zero we have n + 2  particles labeled 
( 1 , . . . ,  n + 2). 1 is the label of the particle present at time t and 2 is the 
label of the particle adjoined at time s. (1 . . . . .  n + 2) is partitioned into 
two sets M I , M  2 depending on whether  the part icle labeled jm is 
"mechanically connected" to either particle 1 or particle 2. Formally M 1 
and M 2 are constructed by iteration: 1, j l  . . . . .  j k - !  E M1, 2 E M2, and 
m + 2 E M i if j,,  E M i, m = k . . . . .  n. For simplicity particles with labels 
in M i are called i particles. 

The contribution to the pertubation series of this particular term is 
then 

I+ (c,t  1 . . . . .  t , , j ,  . . . .  , j , )  

= I + ( e ) =  c-2~ d x l d x 2 d p 3 d t 3 3 ' ' '  d p , + 2 d & , + 2 f ( x l ) g ( x 2 )  
JA +(,) 

• [ S ~ ( i  - t l ) C ' ( j l ,  p 3 , ~ 3 3 ) . . .  S; , ( tk_ ~ - s ) B ( x 2 )  

• S[,+~(s - t k ) C ' ( j  ~, p k + 2 , ~ k + 2 ) ' ' '  S,~+2(t,)r,~+2](Xl) 

(3,20) 

The definition of A+ (c) = A+ (c,t l . . . . .  tn, j l ,  . . .  ,j~) will be given in 
a moment.  

We will use the following notational convention. The dependence on 
t 1 . . . . .  t n , j l  . . . . .  jn is suppressed unless necessary. Subsets of A+ (e) will 
be denoted by further arguments A+ (e . . . .  ). The integrands are denoted 
by I+  (e . . . .  ) with arguments not yet summed over. For example, 1+ (e, 
t 1 . . . . .  t n , j l , . . .  , j n , X l , X 2 ,  P 3 , ~ 3  . . . . .  Pn+2,~n+2) denotes the integrand 
of (3.20) and I+ (e, t 1 . . . . .  t,) denotes I+  (e, t 1 . . . . .  t,, j l  . . . . .  j~) summed 
over Jl . . . . .  j , .  From the arguments appearing in I+  it should be plain 
what quantity we consider. The limit of I+  ( e , . . . )  as e---> 0 is denoted by 
I + ( . . .  ). 

The integrand of (3.20) has a simple constructive meaning. We start 
particle 1 at x 1 = (ql, Pl) = x l ( t ) .  It  evolves backwards in time under the 
hard sphere dynamics for a time span t - t I to ql( t l ) ,  p l ( t l ) .  Then particle 3 
is adjoined at ql ( f i )  + e~3 with momentum P3. These two particles evolve 
backwards in time under the hard sphere dynamics for a time span t~ - t 2, 
etc. At time s we adjoin the particle 2 at q2 with momentum P2. This 
construction defines, in principle, x l ( 0 ) , . . . ,  x,+2(0) as a function of 
Xl, X2, P3,~33 . . . . .  pn+2,~3,+2 and therefore r2+2[xl(0 ) . . . . .  x,+2(0)]. The 
construction may break down because of two reasons. (i) The particle 
adjoined at any one of the time points t~ . . . . .  s . . . . .  tn overlaps with the 
particles already present at that time. Let/~(e) c (A • R3) 2 • (R 3 • $2) " be 
the set of points for which such an overlap does not occur. (ii) At some 
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point of the construction one reaches a singular configuration beyond 
which the hard sphere dynamics is not defined (cf. Section 2). In this case 
the dynamical trajectory to be constructed from xl ,  x 2, p3,t~3 . . . . .  Pn+2, 
~n + 2 E A(e) remains undefined. From the work of Alexander we know that 
the set of such points in A(E) forms a set of dxldx2dp3d~03 �9 �9 "dpn+2d~n+ 2 
--measure zero. Excluding this set of measure zero from A(e) defines 
A+ (c). 

We proceed by writing out the pertubation series for f d x l d x 2 f ( x l )  
g (xa ) r~(x l , t ) r~ (xz ,S  ). We note that this series is given by (3.19) together 
with the rule that collisions between 1-particles and 2-particles are ignored. 
To be more precise: Fix again t 1 . . . . .  t, a n d j l  . . . . .  jn. Then Mj and M 2 
are uniquely defined. Let Sin'(t) denote the time evolution of m hard 
spheres, such that collisions between particles with labels in M 1 
{ 1 . . . . .  m} and particles with labels in M 2 n ( 1 , . . . ,  m} are ignored. Let 
us define 

I _ ( , , t l  . . . . .  t , , j l  . . . . .  j , )  

=-- I _ ( ~ )  = c - 2 ~  dxldx2dp3dd~3 . . . d p , + 2 d ~ , + z f ( x ] ) g ( x 2 )  
Ja -(,) 

x [ S ~ ( t -  t l ) C ' ( j 1 ,  p 3 , d o 3 ) . . .  S2+2(t,)V~+l](X,) (3.21) 

[cf. (3.20), where P~+2(xl . . . . .  x ,+2)  = r~(xk, ,  . . . .  Xk~)r~(Xkm+,, . . . , Xkm+,), 
(kl . . . . .  kin) = Mn, {k,~+l . . . . .  k,,+n } = M E, and where iX_ (E) is defined 
as iX+ (c) ignoring collisions between 1-particles and 2-particles.] Then 

f dx  1 dx  2 f ( x l ) g ( x 2 ) r ~ ( x , ,  t )r~(x2,  s) 

oo 

_ <<. tn . . .  <<.tk<~S<~tk_l<~ " ' "  < t ~ < ~ t  

n + l  

X E E " ' "  E I - ( ' ,  t, . . . . .  t . , j l  . . . . .  J . )  (3.22) 
j l = l  j2= 1,3 j n = l  

[cf. (3.19)1. 
(ii) Parti t ion o f  iX+ (c) and iX_ (c). For Xl,X2, to3, &3 . . . . .  P~+2, &~+2 

iX+(r let ~ = ,r(xl,  x2, P 3 , . . . ,  ~n+2) be the time of the last collision 
between 1-particles and 2-particles. We drop a set of measure zero from 
iX+ (c) corresponding to a simultaneous collision of two pairs of 1-particles 
and 2-particles at time T. After time ~- only collisions between 1-particles by 
themselves and between 2-particles by themselves occur. Then we define 

A+ (c,n + 1)=  (XDX2, P3,0~ 3 . . . . .  p.+2,G+2 ~ix+(,)l 
no collisions between 1-particles 
and 2-particles occur) (3.23) 



298 Spohn 

and 

A + (C,/ 'n) = ( x  D x2,/03 . . . . .  an  +2 ~ A + (E) [ T ~ It m +D tin) ) (3 .24)  

with m = k - 1  . . . . .  n, tk_ 1=s ,  t,+ l = 0 .  The decomposition A (c) is 
defined in the same way. ~- is now the time of the last overlap between 
1-particles and 2-particles. The partition (3.23) of A+ (e), respectively, (3.24) 
of A (e), is inserted in (3.20), respectively, in (3.21). 

(iii) Discussion of I + (e,n + 1) and I (e,n + 1). Clearly A+(e,n + 1) 
= dX (e,n + 1) and on A+ (e,n + 1) (3.20) and (3.21) are identical except 
for the initial condition. Subtracting both terms the initial correlation 
functions are E-Z(rj+ 2 - r,~+2). By (F1) and (F2) they satisfy the conditions 
(C1) and (C2) of Lanford's theorem. So 

l i m I + ( e , n + l ) - I  (c,n + l) 
~---~0 

= f d x , & 2 f ( x O g ( x 2 ) [  & ( t -  t,)C+,.3 . . . & ( t k _ ,  - s) 

XB(x2 )Sk+I (S -  tk)" " " Cj,,n+2Sn+2(ln)rn+2](Xl) (3 .25)  

with 

rn + 2(X 1 . . . . .  Xn+2) = 

I n+2 } 
E E h(xi, Xm+j) ~ r(Xk) 

iEM 1 jEM2 L k = l  
k~i,k~m+j 

(3.26) 

W(t)  is the solution operator to the two-particle Boltzmann hierarchy 

3-~-rm,n(x I . . . .  Xm, Yl . . . . .  yn,t)  Ot 

i=1 j = l  

dr" ~ (Ci, m+l?'m+l,n)(Xl . . . . .  yn ,t) 
i=1 

+ ~ (Cj,n+lrm,n+l)(Xl, ".-,yn,t) 
j = l  

(3.28) 

Note that (3.26) is symmetric only under permutations of particles within 
one group. 

We add up all terms of the pertubation series of the form (3.25). This 
yields 

f dx 1 dy 1 f ( x O g ( y O ( V ( t  - s)[ W(s )r] . : (y l ) )1 (x l )  (3.27) 
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The initial conditions r in (3.27) are 

rm,n(Xl ,  " " " , Xm, Y l ,  " " " , Y n )  = h ( x i ,  Y j )  r ( x k ) r ( Y k ' )  
i = l j = l  l = 1  k ' = l  

kvLi k ' ~ j  

(3.29) 
For 0 < t < t o the solution is obtained as 

rm,n(X 1 . . . . .  Xrn, f l  1 . . . . .  y n , S )  

= U(s ,  O) U(s ,  O)h) (x  i, J~l r (xk ,  s ) r (yk . ,  s) (3.301 
i = 1  1 = 1  k ' = l  

kq=i k'=/=j 

The components ( rm+l(x  1 . . . . .  Xm, yl,s) lm = 1,2 . . . .  ) define the initial 
conditions for V ( t  - s) yielding 

[ V ( t  - s t r ( y l , S ) ] m ( X  1 . . . . .  Xmt 

m C  } 

=i~a=lt ( U ( t ' O ) U ( s ' O ) h ) ( x i '  y l )  k = l  f i  r ( x ~ , t )  (3.31) 

kv~i 

The first component of (3.31) results then in the second term of (3.10). 
(iv) Discussion of  I + (e ,m) ,  m = k - 1 . . . . .  n. In (iii) the prefactor E -2 

was cancelled by clustering of the initial state. For I+ (c, m), m < n, we will 
have to cancel the prefactor e-2 by forcing one additional collision. 

We partition A+ (c,m) into {A+ ( c , m , i , j ) ) ,  where 

A+ ( c , m , i ,  j )  = { x l ,  x 2, P3,033 . . . . .  Pn+ 2,03n+ 2 E A+ (re, c) I the collision 

at time ~- ~ [tin+ 1, tm) is between 

particle i E M 1 and particlej E M2) 
Let us define 

( R~(03, i, j ) r ' ) , ( x l ,  . . . , x , )  

= 03" (Pj - Pi)r~(x~ . . . . .  q,, Pi . . . . .  qi + E03, pj . . . . .  x,) (3.32) 

Then we have the identity 

I+ ( e , m , i , j )  = ( .  d~'d03dpldx2dp3d03 3 . . .  dp,+2d03,+ 2 
dA +(c,m,i , j )  

• f ( q i ,  P l ) g ( x 2 ) [ S ~ (  t - t ] ) C ' ( J l ,  P3,0331 

�9 . .  s ; , ( t k _ ,  - s ) B ( x 2 ) S ; , + l ( s  - t k )  

" ' "  S,~+2(tm - "r)Rr "r - /'m+ 11 

X C ' ( jm+, , /Tm+3 ,03m+31  �9 �9 �9 S~+2(t , )r;+2](q, ,  e l )  (3.33) 

(3.33) results from a change of variables of ql to "r, 03 achieved in the 
following way: For q], Pl,X2,/03,033 . . . . .  _Pn+2,03n+2 ~ A+ ( c , m , i , j )  I "r 
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(tm+ l, tin) is the time of a last collision between particle i and particle j 
such that after t" there are no further collisions between 1-particles and 
2-particles and 03 is given by qj(~-)= qi('r)+ ~03. This defines 03 and �9 as 
functions on A+ (c, m, i, j). Let A+ (c, m, i, j )  be the image of A+ (c, m, i, j )  
under this mapping. Conversely, since 1-particles and 2-particles do not 
interact after time ~, the history of the 2-particles between time T and s and 
therefore qj(z) is well defined and independent of the coordinates of the 
1-particles. Let us construct the history of the 1-particles between time ~" 
and t. Because of the periodic boundary conditions, if ql is shifted to ql + a 
while keeping Pl,/03,033 . . . .  fixed, then qi('r) is shifted to  qi('r) + a. There- 
fore ql is uniquely defined by requiring 

qj(.r) = qi(r) + ~3, (pj(~) - pi(~)) �9 03 > 0 (3.34) 

By construction ql ~'r,03 is one-to-one as a map from z~+ ( c , i , j ,m)  to 
~+(E, i , j ,m) .  

The Wronskian 0(q1(r = c203 �9 (pj(r) - pi(z)) and, because of 
periodic boundary conditions, the Wronskian O(qO/3(qi(r)) = 1. Therefore 
the volume element transforms as 

dq~ = cz03 �9 (pj(T) - pi(.c)) dr d03 (3.35) 

which is taken into account through the definition of R'(03, i, j). 
(iv) Uniform Bound. The limit c ~ 0 is proved by dominated conver- 

gence. So first we should obtain a bound uniform in r In (3.33) 

1I+ (E, t, 03, el,  x2 . . . . .  P,,+2, 03,,+2, j l  . . . . .  j , , i ,  j)[ 

< ( I p j , ( t ] ) l  + Ip31)  �9 �9 �9 ( I p / ( ~ ) l  + I p j ( ~ ) l )  �9 �9 �9 ( [ p j . ( t . ) l  + I p . + 2 [ )  
n+2 

• Mz"+2X~+2(ql(O) , . . . ,  q,+2(0)) 1"I ha (pj(0)) (3.36) 
j = l  

since 103" (Pi - Pj)] < Ipel + Ipjl and by the assumed bound (C2) for r~'+2. 
Here x~(ql . . . . .  q.) = 0 whenever Iqi - qj[ < c and X~'(ql . . . . .  q,) = 1 oth- 
erwise. In (3.36) we sum first over all pairs i , j ,  and then over all j l  . . . . .  in. 
Then, using 

/ n \ 1/2 
~ [ pj[ < lnj~= l p~ ) (3.37) 

j = l  

we have 

[I+ (e . . . . .  ~3,+2)1 < (Ipl(t,)l + [P31) �9 " " (m + 2) 1 pj(r)2 

•  ( n +  1) ~ pjo(t,) 2 + ( n +  )p.+21 
j , ,=l  

n+2  
• Mz"+2Xi,+2(ql(O) . . . . .  q.+2(O)) IX h~ (pj(O)) (3.38) 

j = l  
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By stationarity of the equilibrium distribution 
n+2 

X~+2(ql(0), . . .  , q.+2(0)) I-I h~(&(O)) 
j=l  

n+2 
= X~+z(q,(t.l . . . . .  q.+z(t. l)  1"[ hB(pj(tn)) 

j=l  
n+l 

< X.'+l(ql(t.), - . .  , qn+l(t.)) 171 hB(pj(tnl)h#(Pn+2) (3"39/ 
j=l  

Together with conservation of energy this implies the bound 

[I+ (c . . . . .  o3.+2tl < ([Pl(tltl + IP3[) �9 " " (n + 11 Pjo( . - l )  
j .=l  

n+2 c + ((n + 1)[p.+2l)Mz Xn+l(q,(tn-l), "" ,q.+,(tn-1)) 
n+l 

• IX hB(P.+l( t . - l l )h#(p.+2) (3.40) 
j= l  

Finally, by iteration, 

II+(e . . . . .  o3.+a)[ <(IPll  + IP311''" (m + 2  / (m + 2) 2 
j=l  

{[ n+l P2] 1/2 
�9 . .  (n + 1) • + (n + 1)]Pn+2 I 

j .=l  

n+2 
X Mz  n+2 I-I ha(pj) (3.41) 

j=l  

We add the contributions of A(E,m), m = k - 1 , . . . ,  n, and perform the 
multiple time integrations. This yields then a bound on the pertubation 
series for particle histories with at least one collision between 1-particles 
and 2-particles: 

[/+(e,m)[~ c ~ ~-. (4~rz)" d p l . . ,  dp,+2 I'[ hB(Pj) 
k=l m = k - I  n=0 j=l  

• t2 lp ) +21,,I 

�9 .- (n + 1)j =ipf + (n + l)IPn+2 l 

• 0 (m + 2)3/2[ j~--1 p: (3.42) 
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(3.42) differs from the bound in Lanford's theorem only by the term in the 
curly bracket. Its contribution is of the order n 5/2 to the nth term of the 
sum. So (3.42) converges provided t < to(Z, fl). 

(ivb) Term-by-Term Convergence. We want to prove the limit as c o 0  
of l + ( e , m , i , j )  [cf. (3.33)]. By (3.41) dominated convergence may be 
applied. Let us construct the particle history as described before with 
particles now considered as noninteracting point particles. More precisely: 
We place a point particle at qa = q2(s) with momentum p:  = p2(s). It 
evolves freely backwards in time for a time span s - t k. Le t j l  E M z be the 
smallest element in M 2 wi thj l  > 2. Then we adjoin the point particle j l  at 
qj, = q2(t~) with momentum pj .  To the pair p2(tk),pj, we associate the 
incoming momenta p'2(tl~), ~( according to O3j . (p2(t~) = p~(t~) and flj, = Pfil, 
if (p2 ( t k ) - -p j ) ' o3 j ,  > 0). Both particles evolve then freely a time span 
t k - tk+ 1 backwards in time, etc., up to time r. Then the history of the 
1-particles is constructed in the same way, where ql is uniquely determined 
through the condition qi(r) = qj(r). We require also that (pj($) - pi( 'r)) .  O3 
> 0 which is an implicit condition on range of p~,x2,  p3,o3 3 . . . . .  Pm+2, 
o3m+2" By (2.1) o3 determines the incoming momenta p ' ( r )  and pj(,c). Then, 
finally, the particle history is completed up to time zero. A+ (m, i, j )  denotes 
the allowed set of r, O3, P l , x2 ,  p3,O33, . . . ,Pn+2,O3,+2" Let ZX+ (O,m,i ,  j )  
C A + ( m , i , j )  be the set of points such that its corresponding particle 
history has, besides the ones described above, no further points where two 
particles spatially coincide at some time. 

Let 

( R(O, o3,i, j ) r ) n ( x l  . . . . .  xn) = O3 "'(Pj - Pi) 

X rn(x,  . . . . .  qg,_P; . . . . .  qi, Pj . . . . .  Xn) 

(3.43) 

and let 

( C ( j ,  Pn+l ,an+l)r )n(Xl ,  . . . , Xn) 

= a "  ( P n + l  - -  ~ j ' ) ( r n +  I(Xl . . . . .  qj', ~ j ,  �9 * �9 , q j ,  P n q - l )  

-- rn+,(X, . . . . .  qj, P j , ' ' ' ,  qj, Pn+,)) (3.44) 

Let A c A + ( O , m , i , j )  be compact. Then e can be chosen so small that 
A C ~+ ( e , m , i , j ) .  Let xj(e,0) be the position and momentum of the j th  
particle at time zero considered as a function of r, o3, p l , x 2 ,  P3,o3 3, 
. . . .  Pn+2, 03,+2 as constructed in part (iv) of the proof and let xj(O) be the 

position and momentum of the j th  particle at time zero as constructed 
above. Then on A,  Xl(e,0 ) . . . . .  x,+2(e,0 ) are continuous, vary in a com- 
pact set of F,+2(0 ), and converge as e -+0  to xa(0 ) . . . . .  x,+2(0 ). (C2) 
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implies then that the integrand of (3.33) converges on A. Since A+ (m, i, j )  
kA+ (0, m, i, j )  is of measure zero, by dominated convergence 

f ~  " ^ " ' ' d ,  " l i m I + ( E , m , i , j )  = d ' r d o ~ d p ~ d x 2 •  dp3d43  ~n+2dton+2 
e.--)O + (m,  i, j )  

• f ( q ~ ,  P O g ( x 2 ) [ S ~ (  t - t O C ( j , ,  P3,43) 

�9 . .  S k ( t k _ , -  s ) B ( x 2 ) S k + , ( s  - t~) 

�9 . .  Sm+2( tm - "r)R+ ( 0 , 4 , i , j )  

• Sm+2('r - tm+, )C( j . ,+ ]  , Pm+3,~3.,+3) 

�9 . .  S , + 2 ( t , ) r , + 2 ] ( q  ,, p,)  (3.45) 

with rn+z(Xl ,  Xn+2 ) n+2 . . . .  = r I j =  1 r ( x j ) .  
Let 

( R  + ( 4 ,  i, j ) r , ) ( x ,  . . . . .  x , )  

= 4 .  ( p j  - Pi) • r , ( x l , . . . ,  qi, P; . . . . .  qi, Pj  . . . . .  Xn)6(q i  - qg) 

(3.46) 
We reintroduce the q~ integration and obtain 

l imI+ ( e , m , i ,  j )  
e---~0 

= f  x,a.2dp, d4, dpo+2d4o+2 +I(AXR3)2• 2) J 

• f~. (p~_,,,~ ~ od4 f(z,)g(=~)[ s , ( t  - t , ) c ( j , ,  p , ,  4 ~ )  

�9 . .  s k ( t ~ _ ,  - s) • B ( x ~ ) S ~ + , ( ,  - t~) 

�9 . . S m + 2 ( t  m - - . r ) R + ( 4 , i , j ) S m + z ( . r -  t in+,) 

�9 "" S , + 2 ( t , ) r , + z ] ( x l )  (3.47) 

Remark.  If specularly reflecting boundary conditions are imposed, 
then the function ql --~ 1-, 4 is not one-to-one, in general. In fact, because of 
focusing, there may be infinitely many ql's satisfying (3.34). In principle, 
one should partition A+ (c, i, j,  m) such that on each element of the ql -~ ~', 
4 is one-to-one. However, even then the difficulty of obtaining uniform 
bounds on the Wronskian remains. Formally (3.47) is still correct. Instead 
of (3.35) the volume element transforms as 

dq] = e 2 ( O ( q l ) / ~ ( q i ( ' r ) ) ) 4  . (p j ( ' r )  - p i ( ~ ) ) d ' r  d 4  (3.48) 
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In the limit c ~ 0 ,  O(qO/a(qi (~) )  is the correct volume element for the 8 
function appearing in (3.47). 

(v) Discussion o f  I (~, m),  m = k - 1 . . . . .  n. The proof of conver- 
gence of the term I (c, m) parallels the one for I+ (c, m) given in part (iv). 
We partition A (c, m) into A_ (c, m, i, j )  according to the pair of particles i 
and j touching at time ~-. Then the ql integration is changed to the d~-do3 
integration, ql is still defined by (3.34). Particles i and j touch at time ~-. 
Backwards in time they simply pass through each other. So p~(~) and pj(,c) 
are the same just before and just after touching. The uniform bound for 
I (c . . . . .  o3,+2) is identical to (3.41). 

Let 

( R _  (o3, i, j ) rn ) (  x , . . . . .  xn) 

= o 3 " ( p j - p i ) G ( x ~  . . . . .  qi, p~ . . . . .  qj, pj . . . . .  x , )8(qg - qy) (3.49) 

for o3. (pj - Pi) >10. Then, by the same argument as used before, I (c, m, 
i, j )  converges to (3.47) with R + (o3, i, j )  replaced by R_ (O3, i, j )  as c -~ 0. 

Adding I+ (m, i, j )  and - I (m, i, j )  results in (3.47) with R+ (o3, i, j )  
replaced by R (o3, i, j )  = R + (O3, i, j )  - R_  (O3, i, j). 

Finally we have to sum the pertubation series. One obtains 

fOs dT f dxldy 1 f ( x , ) g ( y , ) ( V ( t -  s)[ W ( s  - "r)r(~) ] . , l (Yl ) ) l (X1)  (3.50) 

[cf. (3.27)], with initial condition 

rm,n(Xl . . . . .  X,,, Yl  . . . .  , Y , ,  ~) 

---~i=lj=l ~ ~ { R(r(q')'f('r))(Xi' yj) k=lk'=l fi fl F(Xk'T)r(Yk"q') (3.51) 
k~i k'~j 

By the same argument as in part (iii), (3.50) with initial condition (3.51) 
results in the last term of (3.10). �9 

4. CONCLUSIONS 

Let us assume that the limiting random field ~(f, t) is Gaussian. Then 
~(f, t) has mean zero and covariance (3.10). In formal derivations, usually, 
one tries to write down a stochastic partial differential equation for the time 
evolution of the fluctuation field. Let us define the fluctuation field point- 
wise by ~(f, t ) =  f dqdp  f ( q ,  p ) ( (q ,  p,  t). Then the fluctuations around the 
solution of the Boltzmann equation are governed by 

O---~(q'p't)~t = - p ~ ( q , p , t )  + C r ( o ~ ( q , p , t  ) + F ( q , p , t )  (4.1) 

[If ~(q, p,0)  is Gaussian with mean zero and covariance (3.3), then the 
solution of (4.1) with this initial condition is Gaussian with mean zero and 
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covariance (3.10).] Cr(t) is the linearized Boltzmann collision operator 
defined in (3.7). F(q, p, t) is a Gaussian random force with mean zero and 
covariance 

f dpdp p,i ) 
= �89 - i )8 (q  - q)f~.(p~_p)>~odP dp] d ~ .  (p] - p) 

• r(q, p~, t)r(q,  p', t ) ( g (p~)  + g(p ' )  - g ( p , )  - g ( p ) )  

• {f(P~) + f (P' )  - f (P l )  - f (P ) }  (4.2) 

The evolution equation (4.1) contains linearized field equations which 
evolve deterministically the fluctuations present in the initial state. (In the 
case of the Vlasov equation that is all what enters, i.e., F ---- 0 for fluctua- 
tions in the mean field limit.) In addition (4.1) contains a fluctuating force 
due to the microscopic background. Our proof singles out precisely those 
microscopic events which produce this random force and shows that all 
other dynamical events are of probability zero in the low-density limit. 
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